Рoссийскиe физики сoздaли aлгoритм, пoзвoляющий распознавать конденсированные кластеры (сгустки частиц), например, капли конденсата в газе или кристаллы в пересоленном растворе. На основе алгоритма был разработан новый метод, который значительно упростит наблюдение за процессами смены агрегатного состояния веществ. Работа ученых из МГТУ имени Н.Э. Баумана опубликована в Journal of Physical Chemistry C. Исследование поддержано грантом Российского научного фонда.
Авторы работы предложили алгоритм, который может определять термодинамическую фазу двумерной системы на основе расположения ее частиц. Это могут быть координаты молекул, рассчитанные с помощью моделирования методом молекулярной динамики, или координаты коллоидных частиц, найденные по микрофотографии.
«Для того чтобы анализировать, какие законы управляют поведением частиц в конденсате (жидкостях или кристаллах), или газах, или на границе раздела между ними, нужно для начала научиться различать частицы, которые относятся к разным агрегатным состояниям», — пояснил руководитель работы, ведущий научный сотрудник МГТУ имени Н.Э. Баумана Станислав Юрченко.
Глядя на снимок системы частиц, человек четко видит их сгустки и легко различает конденсированные кластеры (группы частиц), газ и границу раздела между ними. Однако для автоматического распознавания при помощи компьютерной обработки эта задача не так проста. Известные сегодня алгоритмы достаточно сложны, требуют детальной настройки с участием человека и не универсальны. Для использования метода, разработанного российскими физиками, достаточно снимков системы, по которым можно определить, например, какие частицы относятся к конденсату, а какие — к газовой фазе.
Алгоритм начинает работу с того, что получает набор координат частиц, анализирует их расположение и чертит вокруг каждой из частиц вещества ячейки Вороного. Это области, каждая точка которых ближе к находящейся в них частице, чем к любой другой. После этого программа анализирует геометрию этих ячеек: если они имеют правильную форму и расположены упорядоченно, то, скорее всего, это частицы в конденсате (жидкость или твердое тело). Напротив, если ячейки имеют неправильную, сильно вытянутую форму, то, вероятно, это газообразное вещество или поверхностные частицы (находящиеся на границе газа и конденсата). Поверхностные частицы можно легко отфильтровать, учитывая в последующем анализе лишь газ и конденсат.
Алгоритм может применяться для фундаментальных исследований спинодального распада — явления быстрого перехода вещества в другую термодинамическую фазу по всему объему, при котором в объеме вещества одновременно находятся области в разных термодинамических фазах. Именно так, например, в газообразной среде образуются капли жидкости, в соленых растворах возникают кристаллы, а в сплавах — области с разнородным химическим составом.
Метод можно использовать и в работе на установке для наблюдения за самоорганизацией частиц, которая была создана этой же группой ученых под руководством Станислава Юрченко в рамках гранта. Прибор позволяет исследовать поведение микроскопических коллоидных частиц, которые демонстрируют самосборку и фазовые переходы аналогично тому, как это происходит в природных атомных и молекулярных системах. Предложенный метод открывает новые перспективы детального исследования спинодального распада – явления, играющего ключевую роль в динамике фазовых переходов в природе.